333 research outputs found

    Effectiveness of the <i>Activate </i>injury prevention exercise programme to prevent injury in schoolboy rugby union

    Get PDF
    Objective The efficacious Activate injury prevention exercise programme has been shown to prevent injuries in English schoolboy rugby union. There is now a need to assess the implementation and effectiveness of Activate in the applie setting. Methods This quasi-experimental study used a 24-hour time-loss injury definition to calculate incidence (/1000 hours) and burden (days lost/1000 hours) for individuals whose teams adopted Activate (used Activate during season) versus non-adopters. The dose-response relationship of varying levels of Activate adherence (median Activate sessions per week) was also assessed. Player-level rugby exposure, sessional Activate adoption and injury reports were recorded by school gatekeepers. Rate ratios (RR), adjusted by cluster (team), were calculated using backwards stepwise Poisson regression to compare rates between adoption and adherence groups. Results Individuals in teams adopting Activate had a 23% lower match injury incidence (RR 0.77, 95% CI 0.55 to 1.07), 59% lower training injury incidence (RR 0.41, 95% CI 0.17 to 0.97) and 26% lower match injury burden (95% CI 0.46 to 1.20) than individuals on non-adopting teams. Individuals with high Activate adherence (>= 3 sessions per week) had a 67% lower training injury incidence (RR 0.33, 95% CI 0.12 to 0.91) and a 32% lower match injury incidence (RR 0.68, 95% CI 0.50 to 0.92) than individuals with low adherence (<1 session per week). While 65% of teams adopted Activate during the season, only one team used Activate three times per week, using whole phases and programme progressions. Conclusion Activate is effective at preventing injury in English schoolboy rugby. Attention should focus on factors influencing programme uptake and implementation, ensuring Activate can have maximal benefit

    Influence of the Alternative Sigma Factor RpoN on Global Gene Expression and Carbon Catabolism in Enterococcus faecalis V583

    Get PDF
    The alternative sigma factor σ54 has been shown to regulate the expression of a wide array of virulence-associated genes, as well as central metabolism, in bacterial pathogens. In Gram-positive organisms, the σ54 is commonly associated with carbon metabolism. In this study, we show that the Enterococcus faecalis alternative sigma factor σ54 (RpoN) and its cognate enhancer binding protein MptR are essential for mannose utilization and are primary contributors to glucose uptake through the Mpt phosphotransferase system. To gain further insight into how RpoN contributes to global transcriptional changes, we performed microarray transcriptional analysis of strain V583 and an isogenic rpoN mutant grown in a chemically defined medium with glucose as the sole carbon source. Transcripts of 340 genes were differentially affected in the rpoN mutant; the predicted functions of these genes mainly related to nutrient acquisition. These differentially expressed genes included those with predicted catabolite-responsive element (cre) sites, consistent with loss of repression by the major carbon catabolite repressor CcpA. To determine if the inability to efficiently metabolize glucose/mannose affected infection outcome, we utilized two distinct infection models. We found that the rpoN mutant is significantly attenuated in both rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI). Here, we examined a ccpA mutant in the CAUTI model and showed that the absence of carbon catabolite control also significantly attenuates bacterial tissue burden in this model. Our data highlight the contribution of central carbon metabolism to growth of E. faecalis at various sites of infection

    Synaptic expression of TAR-DNA-binding protein 43 in the mouse spinal cord determined using super-resolution microscopy

    Get PDF
    Funding: This work was supported by Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), Chief Scientist Office, RS Macdonald Charitable Trust, ALS CURE Project, the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (695568 SYNNOVATE), Simons Foundation Autism Research Initiative (529085), and the Wellcome Trust (Technology Development grant 202932).Amyotrophic Lateral Sclerosis (ALS) is characterised by a loss of motor neurons in the brain and spinal cord that is preceded by early-stage changes in synapses that may be associated with TAR-DNA-Binding Protein 43 (TDP-43) pathology. Cellular inclusions of hyperphosphorylated TDP-43 (pTDP-43) are a key hallmark of neurodegenerative diseases such ALS. However, there has been little characterisation of the synaptic expression of TDP-43 inside subpopulations of spinal cord synapses. This study utilises a range of high-resolution and super-resolution microscopy techniques with immunolabelling, as well as an aptamer-based TDP-43 labelling strategy visualised with single-molecule localisation microscopy, to characterise and quantify the presence of pTDP-43 in populations of excitatory synapses near where motor neurons reside in the lateral ventral horn of the mouse lumbar spinal cord. We observe that TDP-43 is expressed in approximately half of spinal cord synapses as nanoscale clusters. Synaptic TDP-43 clusters are found most abundantly at synapses associated with VGLUT1-positive presynaptic terminals, compared to VGLUT2-associated synapses. Our nanoscopy techniques showed no difference in the subsynaptic expression of pTDP-43 in the ALS mouse model, SOD1G93a, compared to healthy controls, despite prominent structural deficits in VGLUT1-associated synapses in SOD1G93a mice. This research characterizes the basic synaptic expression of TDP-43 with nanoscale precision and provides a framework with which to investigate the potential relationship between TDP-43 pathology and synaptic pathology in neurodegenerative diseases.Publisher PDFPeer reviewe

    Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.

    Get PDF
    BACKGROUND\ud \ud Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud \ud METHODS\ud \ud The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud \ud RESULTS\ud \ud All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud \ud CONCLUSION\ud \ud Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field

    Synaptic expression of TAR-DNA-binding protein 43 in the mouse spinal cord determined using super-resolution microscopy

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is characterised by a loss of motor neurons in the brain and spinal cord that is preceded by early-stage changes in synapses that may be associated with TAR-DNA-Binding Protein 43 (TDP-43) pathology. Cellular inclusions of hyperphosphorylated TDP-43 (pTDP-43) are a key hallmark of neurodegenerative diseases such ALS. However, there has been little characterisation of the synaptic expression of TDP-43 inside subpopulations of spinal cord synapses. This study utilises a range of high-resolution and super-resolution microscopy techniques with immunolabelling, as well as an aptamer-based TDP-43 labelling strategy visualised with single-molecule localisation microscopy, to characterise and quantify the presence of pTDP-43 in populations of excitatory synapses near where motor neurons reside in the lateral ventral horn of the mouse lumbar spinal cord. We observe that TDP-43 is expressed in approximately half of spinal cord synapses as nanoscale clusters. Synaptic TDP-43 clusters are found most abundantly at synapses associated with VGLUT1-positive presynaptic terminals, compared to VGLUT2-associated synapses. Our nanoscopy techniques showed no difference in the subsynaptic expression of pTDP-43 in the ALS mouse model, SOD1G93a, compared to healthy controls, despite prominent structural deficits in VGLUT1-associated synapses in SOD1G93a mice. This research characterises the basic synaptic expression of TDP-43 with nanoscale precision and provides a framework with which to investigate the potential relationship between TDP-43 pathology and synaptic pathology in neurodegenerative diseases

    Is metal theft committed by organized crime groups, and why does it matter?

    Get PDF
    Using the example of metal theft in the United Kingdom, this study used mixed methods to evaluate the accuracy of police estimates of the involvement of organised crime groups (OCGs) in crime. Police estimate that 20-30% of metal theft is committed by OCGs, but this study found that only 0.5% of metal thieves had previous convictions for offences related to OCGs, that only 1.3% were linked to OCGs by intelligence information, that metal thieves typically offended close to their homes and that almost no metal thefts involved sophisticated offence methods. It appears that police may over-estimate the involvement of OCGs in some types of crime. The reasons for and consequences of this over-estimation are discussed

    Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide

    Get PDF
    We report a series of Zr(iv) 2,2′-bipyrrolidine–salan derived complexes and their exploitation for the ROP of rac-lactide to afford highly isotactically enriched PLA.</p

    InnateDB: facilitating systems-level analyses of the mammalian innate immune response

    Get PDF
    Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner

    Monte Carlo Analysis of Neck Linker Extension in Kinesin Molecular Motors

    Get PDF
    Kinesin stepping is thought to involve both concerted conformational changes and diffusive movement, but the relative roles played by these two processes are not clear. The neck linker docking model is widely accepted in the field, but the remainder of the step – diffusion of the tethered head to the next binding site – is often assumed to occur rapidly with little mechanical resistance. Here, we investigate the effect of tethering by the neck linker on the diffusive movement of the kinesin head, and focus on the predicted behavior of motors with naturally or artificially extended neck linker domains. The kinesin chemomechanical cycle was modeled using a discrete-state Markov chain to describe chemical transitions. Brownian dynamics were used to model the tethered diffusion of the free head, incorporating resistive forces from the neck linker and a position-dependent microtubule binding rate. The Brownian dynamics and chemomechanical cycle were coupled to model processive runs consisting of many 8 nm steps. Three mechanical models of the neck linker were investigated: Constant Stiffness (a simple spring), Increasing Stiffness (analogous to a Worm-Like Chain), and Reflecting (negligible stiffness up to a limiting contour length). Motor velocities and run lengths from simulated paths were compared to experimental results from Kinesin-1 and a mutant containing an extended neck linker domain. When tethered by an increasingly stiff spring, the head is predicted to spend an unrealistically short amount of time within the binding zone, and extending the neck is predicted to increase both the velocity and processivity, contrary to experiments. These results suggest that the Worm-Like Chain is not an adequate model for the flexible neck linker domain. The model can be reconciled with experimental data if the neck linker is either much more compliant or much stiffer than generally assumed, or if weak kinesin-microtubule interactions stabilize the diffusing head near its binding site
    corecore